Перевод: со всех языков на все языки

со всех языков на все языки

Early Railways

  • 1 Walschaert, Egide

    [br]
    b. 20 January 1820 Mechlin, Belgium
    d. 18 February 1901 Saint-Lilies, Brussels, Belgium
    [br]
    Belgian inventor of Walschaerrt valve gear for steam engines.
    [br]
    Walschaert was appointed Foreman of the Brussels Midi workshops of the Belgian State Railways in 1844, when they were opened, and remained in this position until 1885. He invented his valve gear the year he took up his appointment and was allowed to fit it to a 2–2–2 locomotive in 1848, the results being excellent. It was soon adopted in Belgium and to a lesser extent in France, but although it offered accessibility, light weight and mechanical efficiency, railways elsewhere were remarkably slow to take it up. It was first used in the British Isles in 1878, on a 0–4–4 tank locomotive built to the patent of Robert Fairlie, but was not used again there until 1890. By contrast, Fairlie had already used Walchaert's valve gear in 1873, on locomotives for New Zealand, and when New Zealand Railways started to build their own locomotives in 1889 they perpetuated it. The valve gear was only introduced to the USA following a visit by an executive of the Baldwin Locomotive Works to New Zealand ten years later. Subsequently it came to be used almost everywhere there were steam locomotives. Walschaert himself invented other improvements for steam engines, but none with lasting effect.
    [br]
    Further Reading
    P.Ransome-Wallis (ed.), 1959, The Concise Encyclopaedia, of World Railway Locomotives, London: Hutchinson (includes both a brief biography of Walschaert (p.
    502) and a technical description of his valve gear (p. 298)).
    E.L.Ahrons, 1927, The British Steam Railway Locomotive 1825–1925, London: The Locomotive Publishing Co., pp. 224 and 289 (describes the introduction of the valve gear to Britain).
    J.B.Snell, 1964, Early Railways, London: Weidenfeld \& Nicolson, 103.
    PJGR

    Biographical history of technology > Walschaert, Egide

  • 2 Hedley, William

    [br]
    b. 13 July 1779 Newburn, Northumberland, England
    d. 9 January 1843 Lanchester, Co. Durham, England
    [br]
    English coal-mine manager, pioneer in the construction and use of steam locomotives.
    [br]
    The Wylam wagonway passed Newburn, and Hedley, who went to school at Wylam, must have been familiar with this wagonway from childhood. It had been built c.1748 to carry coal from Wylam Colliery to the navigable limit of the Tyne at Lemington. In 1805 Hedley was appointed viewer, or manager, of Wylam Colliery by Christopher Blackett, who had inherited the colliery and wagonway in 1800. Unlike most Tyneside wagonways, the gradient of the Wylam line was insufficient for loaded wagons to run down by gravity and they had to be hauled by horses. Blackett had a locomotive, of the type designed by Richard Trevithick, built at Gateshead as early as 1804 but did not take delivery, probably because his wooden track was not strong enough. In 1808 Blackett and Hedley relaid the wagonway with plate rails of the type promoted by Benjamin Outram, and in 1812, following successful introduction of locomotives at Middleton by John Blenkinsop, Blackett asked Hedley to investigate the feasibility of locomotives at Wylam. The expense of re-laying with rack rails was unwelcome, and Hedley experimented to find out the relationship between the weight of a locomotive and the load it could move relying on its adhesion weight alone. He used first a model test carriage, which survives at the Science Museum, London, and then used a full-sized test carriage laden with weights in varying quantities and propelled by men turning handles. Having apparently satisfied himself on this point, he had a locomotive incorporating the frames and wheels of the test carriage built. The work was done at Wylam by Thomas Waters, who was familiar with the 1804 locomotive, Timothy Hackworth, foreman smith, and Jonathan Forster, enginewright. This locomotive, with cast-iron boiler and single cylinder, was unsatisfactory: Hackworth and Forster then built another locomotive to Hedley's design, with a wrought-iron return-tube boiler, two vertical external cylinders and drive via overhead beams through pinions to the two axles. This locomotive probably came into use in the spring of 1814: it performed well and further examples of the type were built. Their axle loading, however, was too great for the track and from about 1815 each locomotive was mounted on two four-wheeled bogies, the bogie having recently been invented by William Chapman. Hedley eventually left Wylam in 1827 to devote himself to other colliery interests. He supported the construction of the Clarence Railway, opened in 1833, and sent his coal over it in trains hauled by his own locomotives. Two of his Wylam locomotives survive— Puffing Billy at the Science Museum, London, and Wylam Dilly at the Royal Museum of Scotland, Edinburgh—though how much of these is original and how much dates from the period 1827–32, when the Wylam line was re-laid with edge rails and the locomotives reverted to four wheels (with flanges), is a matter of mild controversy.
    [br]
    Further Reading
    P.R.B.Brooks, 1980, William Hedley Locomotive Pioneer, Newcastle upon Tyne: Tyne \& Wear Industrial Monuments Trust (a good recent short biography of Hedley, with bibliography).
    R.Young, 1975, Timothy Hackworth and the Locomotive, Shildon: Shildon "Stockton \& Darlington Railway" Silver Jubilee Committee; orig. pub. 1923, London.
    C.R.Warn, 1976, Waggonways and Early Railways of Northumberland, Newcastle upon Tyne: Frank Graham.
    PJGR

    Biographical history of technology > Hedley, William

  • 3 Engerth, Wilhelm

    [br]
    b. 26 May 1814 Pless, Prussian Silesia (now Poland)
    d. 4 September 1884 Baden, Austria
    [br]
    German engineer, designer of the Engerth articulated locomotive.
    [br]
    Engerth was Chairman of the judges for the Semmering Locomotive Trials, held in 1851 to find locomotives suitable for working the sharply curved and steeply graded section of the Vienna-Trieste railway that was being built over the Semmering Pass, the first of the transalpine main lines. When none of the four locomotives entered proved suitable, Engerth designed his own. Six coupled wheels were at the fore part of the locomotive, with the connecting rods driving the rear pair: at the back of the locomotive the frames of the tender were extended forward on either side of the firebox, the front wheels of the tender were ahead of it, and the two parts were connected by a spherical pivot ahead of these. Part of the locomotive's weight was carried by the tender portion, and the two pairs of tender wheels were coupled by rods and powered by a geared drive from the axle of the rear driving-wheels. The powered drive to the tender wheels proved a failure, but the remaining characteristics of the locomotive, namely short rigid wheel-base, large firebox, flexibility and good tracking on curves (as drawbar pull was close behind the driving axle), were sufficient for the type to be a success. It was used on many railways in Europe and examples in modified form were built in Spain as recently as 1956. Engerth became General Manager of the Austro-Hungarian State Railway Company and designed successful flood-prevention works on the Danube at Vienna.
    [br]
    Principal Honours find Distinctions
    Knighted as Ritter von Engerth 1861. Ennobled as Freiherr (Baron) von Engerth 1875.
    Further Reading
    D.R.Carling, 1985, "Engerth and similar locomotives", Transactions of the Newcomen Society 57 (a good description).
    J.B.Snell, 1964, Early Railways, London: Weidenfeld \& Nicolson, pp. 68–73 (for Semmering Trials).
    PJGR

    Biographical history of technology > Engerth, Wilhelm

  • 4 Seguin, Marc

    [br]
    b. 20 April 1786 Annonay, Ardèche, France
    d. 24 February 1875 Annonay, Ardèche, France
    [br]
    French engineer, inventor of multi-tubular firetube boiler.
    [br]
    Seguin trained under Joseph Montgolfier, one of the inventors of the hot-air balloon, and became a pioneer of suspension bridges. In 1825 he was involved in an attempt to introduce steam navigation to the River Rhône using a tug fitted with a winding drum to wind itself upstream along a cable attached to a point on the bank, with a separate boat to transfer the cable from point to point. The attempt proved unsuccessful and was short-lived, but in 1825 Seguin had decided also to seek a government concession for a railway from Saint-Etienne to Lyons as a feeder of traffic to the river. He inspected the Stockton \& Darlington Railway and met George Stephenson; the concession was granted in 1826 to Seguin Frères \& Ed. Biot and two steam locomotives were built to their order by Robert Stephenson \& Co. The locomotives were shipped to France in the spring of 1828 for evaluation prior to construction of others there; each had two vertical cylinders, one each side between front and rear wheels, and a boiler with a single large-diameter furnace tube, with a watertube grate. Meanwhile, in 1827 Seguin, who was still attempting to produce a steamboat powerful enough to navigate the fast-flowing Rhône, had conceived the idea of increasing the heating surface of a boiler by causing the hot gases from combustion to pass through a series of tubes immersed in the water. He was soon considering application of this type of boiler to a locomotive. He applied for a patent for a multi-tubular boiler on 12 December 1827 and carried out numerous experiments with various means of producing a forced draught to overcome the perceived obstruction caused by the small tubes. By May 1829 the steam-navigation venture had collapsed, but Seguin had a locomotive under construction in the workshops of the Lyons-Sain t- Etienne Railway: he retained the cylinder layout of its Stephenson locomotives, but incorporated a boiler of his own design. The fire was beneath the barrel, surrounded by a water-jacket: a single large flue ran towards the front of the boiler, whence hot gases returned via many small tubes through the boiler barrel to a chimney above the firedoor. Draught was provided by axle-driven fans on the tender.
    Seguin was not aware of the contemporary construction of Rocket, with a multi-tubular boiler, by Robert Stephenson; Rocket had its first trial run on 5 September 1829, but the precise date on which Seguin's locomotive first ran appears to be unknown, although by 20 October many experiments had been carried out upon it. Seguin's concept of a multi-tubular locomotive boiler therefore considerably antedated that of Henry Booth, and his first locomotive was completed about the same date as Rocket. It was from Rocket's boiler, however, rather than from that of Seguin's locomotive, that the conventional locomotive boiler was descended.
    [br]
    Bibliography
    February 1828, French patent no. 3,744 (multi-tubular boiler).
    1839, De l'Influence des chemins de fer et de l'art de les tracer et de les construire, Paris.
    Further Reading
    F.Achard and L.Seguin, 1928, "Marc Seguin and the invention of the tubular boiler", Transactions of the Newcomen Society 7 (traces the chronology of Seguin's boilers).
    ——1928, "British railways of 1825 as seen by Marc Seguin", Transactions of the Newcomen Society 7.
    J.B.Snell, 1964, Early Railways, London: Weidenfeld \& Nicolson.
    J.-M.Combe and B.Escudié, 1991, Vapeurs sur le Rhône, Lyons: Presses Universitaires de Lyon.
    PJGR

    Biographical history of technology > Seguin, Marc

  • 5 Thompson, Benjamin

    [br]
    b. 11 April 1779 Eccleshall, Yorkshire, England
    d. 19 April 1867 Gateshead, England
    [br]
    English coal owner and railway engineer, inventor of reciprocal cable haulage.
    [br]
    After being educated at Sheffield Grammar School, Thompson and his elder brother established Aberdare Iron Works, South Wales, where he gained experience in mine engineering from the coal-and ironstone-mines with which the works were connected. In 1811 he moved to the North of England as Managing Partner in Bewicke's Main Colliery, County Durham, which was replaced in 1814 by a new colliery at nearby Ouston. Coal from this was carried to the Tyne over the Pelew Main Wagonway, which included a 1,992 yd (1,821 m) section where horses had to haul loaded wagons between the top of one cable-worked incline and the foot of the next. Both inclines were worked by stationary steam engines, and by installing a rope with a record length of nearly 1 1/2 miles (2.4 km), in 1821 Thompson arranged for the engine of the upper incline to haul the loaded wagons along the intervening section also. To their rear was attached the rope from the engine of the lower incline, to be used in due course to haul the empties back again.
    He subsequently installed this system of "reciprocal working" elsewhere, in particular in 1826 over five miles (8 km) of the Brunton \& Shields Railroad, a colliery line north of the Tyne, where trains were hauled at an average speed of 6 mph (10 km/h) including rope changes. This performance was better than that of contemporary locomotives. The directors of the Liverpool \& Manchester Railway, which was then being built, considered installing reciprocal cable haulage on their line, and then decided to stage a competition to establish whether an improved steam locomotive could do better still. This competition became the Rainhill Trials of 1829 and was decisively won by Rocket, which had been built for the purpose.
    Thompson meanwhile had become prominent in the promotion of the Newcastle \& Carlisle Railway, which, when it received its Act in 1829, was the longest railway so far authorized in Britain.
    [br]
    Bibliography
    1821, British patent no. 4602 (reciprocal working).
    1847, Inventions, Improvements and Practice of Benjamin Thompson, Newcastle upon Tyne: Lambert.
    Further Reading
    W.W.Tomlinson, 1914, The North Eastern Railway, Newcastle upon Tyne: Andrew Reid (includes a description of Thompson and his work).
    R.Welford, 1895, Men of Mark twixt Tyne and Tweed, Vol. 3, 506–6.
    C.R.Warn, 1976, Waggonways and Early Railways of Northumberland, Newcastle upon Tyne: Frank Graham.
    ——c. 1981, Rails between Wear \& Tyne, Newcastle upon Tyne: Frank Graham.
    PJGR

    Biographical history of technology > Thompson, Benjamin

  • 6 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 7 Locke, Joseph

    [br]
    b. 9 August 1805 Attercliffe, Yorkshire, England
    d. 18 September 1860 Moffat, Scotland
    [br]
    English civil engineer who built many important early main-line railways.
    [br]
    Joseph Locke was the son of a colliery viewer who had known George Stephenson in Northumberland before moving to Yorkshire: Locke himself became a pupil of Stephenson in 1823. He worked with Robert Stephenson at Robert Stephenson \& Co.'s locomotive works and surveyed railways, including the Leeds \& Selby and the Canterbury \& Whitstable, for George Stephenson.
    When George Stephenson was appointed Chief Engineer for construction of the Liverpool \& Manchester Railway in 1826, the first resident engineer whom he appointed to work under him was Locke, who took a prominent part in promoting traction by locomotives rather than by fixed engines with cable haulage. The pupil eventually excelled the master and in 1835 Locke was appointed in place of Stephenson as Chief Engineer for construction of the Grand Junction Railway. He introduced double-headed rails carried in chairs on wooden sleepers, the prototype of the bullhead track that became standard on British railways for more than a century. By preparing the most detailed specifications, Locke was able to estimate the cost of the railway much more accurately than was usual at that time, and it was built at a cost close to the estimate; this made his name. He became Engineer to the London \& Southampton Railway and completed the Sheffield, Ashton-under-Lyme \& Manchester Railway, including the 3-mile (3.8 km) Woodhead Tunnel, which had been started by Charles Vignoles. He was subsequently responsible for many British main lines, including those of the companies that extended the West Coast Route northwards from Preston to Scotland. He was also Engineer to important early main lines in France, notably that from Paris to Rouen and its extension to Le Havre, and in Spain and Holland. In 1847 Locke was elected MP for Honiton.
    Locke appreciated early in his career that steam locomotives able to operate over gradients steeper than at first thought practicable would be developed. Overall his monument is not great individual works of engineering, such as the famous bridges of his close contemporaries Robert Stephenson and I.K. Brunel, but a series of lines built economically but soundly through rugged country without such works; for example, the line over Shap, Cumbria.
    [br]
    Principal Honours and Distinctions
    Officier de la Légion d'honneur, France. FRS. President, Institution of Civil Engineers 1858–9.
    Further Reading
    Obituary, 1861, Minutes of Proceedings of the Institution of Civil Engineers 20. L.T.C.Rolt, 1962, Great Engineers, London: G. Bell \& Sons, ch. 6.
    Industrial Heritage, 1991, Vol. 9(2):9.
    See also: Brassey, Thomas
    PJGR

    Biographical history of technology > Locke, Joseph

  • 8 Vignoles, Charles Blacker

    [br]
    b. 31 May 1793 Woodbrook, Co. Wexford, Ireland
    d. 17 November 1875 Hythe, Hampshire, England
    [br]
    English surveyor and civil engineer, pioneer of railways.
    [br]
    Vignoles, who was of Huguenot descent, was orphaned in infancy and brought up in the family of his grandfather, Dr Charles Hutton FRS, Professor of Mathematics at the Royal Military Academy, Woolwich. After service in the Army he travelled to America, arriving in South Carolina in 1817. He was appointed Assistant to the state's Civil Engineer and surveyed much of South Carolina and subsequently Florida. After his return to England in 1823 he established himself as a civil engineer in London, and obtained work from the brothers George and John Rennie.
    In 1825 the promoters of the Liverpool \& Manchester Railway (L \& MR) lost their application for an Act of Parliament, discharged their engineer George Stephenson and appointed the Rennie brothers in his place. They in turn employed Vignoles to resurvey the railway, taking a route that would minimize objections. With Vignoles's route, the company obtained its Act in 1826 and appointed Vignoles to supervise the start of construction. After Stephenson was reappointed Chief Engineer, however, he and Vignoles proved incompatible, with the result that Vignoles left the L \& MR early in 1827.
    Nevertheless, Vignoles did not sever all connection with the L \& MR. He supported John Braithwaite and John Ericsson in the construction of the locomotive Novelty and was present when it competed in the Rainhill Trials in 1829. He attended the opening of the L \& MR in 1830 and was appointed Engineer to two railways which connected with it, the St Helens \& Runcorn Gap and the Wigan Branch (later extended to Preston as the North Union); he supervised the construction of these.
    After the death of the Engineer to the Dublin \& Kingstown Railway, Vignoles supervised construction: the railway, the first in Ireland, was opened in 1834. He was subsequently employed in surveying and constructing many railways in the British Isles and on the European continent; these included the Eastern Counties, the Midland Counties, the Sheffield, Ashton-under-Lyme \& Manchester (which proved for him a financial disaster from which he took many years to recover), and the Waterford \& Limerick. He probably discussed rail of flat-bottom section with R.L. Stevens during the winter of 1830–1 and brought it into use in the UK for the first time in 1836 on the London \& Croydon Railway: subsequently rail of this section became known as "Vignoles rail". He considered that a broader gauge than 4 ft 8½ in. (1.44 m) was desirable for railways, although most of those he built were to this gauge so that they might connect with others. He supported the atmospheric system of propulsion during the 1840s and was instrumental in its early installation on the Dublin \& Kingstown Railway's Dalkey extension. Between 1847 and 1853 he designed and built the noted multi-span suspension bridge at Kiev, Russia, over the River Dnieper, which is more than half a mile (800 m) wide at that point.
    Between 1857 and 1863 he surveyed and then supervised the construction of the 155- mile (250 km) Tudela \& Bilbao Railway, which crosses the Cantabrian Pyrenees at an altitude of 2,163 ft (659 m) above sea level. Vignoles outlived his most famous contemporaries to become the grand old man of his profession.
    [br]
    Principal Honours and Distinctions
    Fellow of the Royal Astronomical Society 1829. FRS 1855. President, Institution of Civil Engineers 1869–70.
    Bibliography
    1830, jointly with John Ericsson, British patent no. 5,995 (a device to increase the capability of steam locomotives on grades, in which rollers gripped a third rail).
    1823, Observations upon the Floridas, New York: Bliss \& White.
    1870, Address on His Election as President of the Institution of Civil Engineers.
    Further Reading
    K.H.Vignoles, 1982, Charles Blacker Vignoles: Romantic Engineer, Cambridge: Cambridge University Press (good modern biography by his great-grandson).
    PJGR

    Biographical history of technology > Vignoles, Charles Blacker

  • 9 Fairlie, Robert Francis

    [br]
    b. March 1831 Scotland
    d. 31 July 1885 Clapham, London, England
    [br]
    British engineer, designer of the double-bogie locomotive, advocate of narrow-gauge railways.
    [br]
    Fairlie worked on railways in Ireland and India, and established himself as a consulting engineer in London by the early 1860s. In 1864 he patented his design of locomotive: it was to be carried on two bogies and had a double boiler, the barrels extending in each direction from a central firebox. From smokeboxes at the outer ends, return tubes led to a single central chimney. At that time in British practice, locomotives of ever-increasing size were being carried on longer and longer rigid wheelbases, but often only one or two of their three or four pairs of wheels were powered. Bogies were little used and then only for carrying-wheels rather than driving-wheels: since their pivots were given no sideplay, they were of little value. Fairlie's design offered a powerful locomotive with a wheelbase which though long would be flexible; it would ride well and have all wheels driven and available for adhesion.
    The first five double Fairlie locomotives were built by James Cross \& Co. of St Helens during 1865–7. None was particularly successful: the single central chimney of the original design had been replaced by two chimneys, one at each end of the locomotive, but the single central firebox was retained, so that exhaust up one chimney tended to draw cold air down the other. In 1870 the next double Fairlie, Little Wonder, was built for the Festiniog Railway, on which C.E. Spooner was pioneering steam trains of very narrow gauge. The order had gone to George England, but the locomotive was completed by his successor in business, the Fairlie Engine \& Steam Carriage Company, in which Fairlie and George England's son were the principal partners. Little Wonder was given two inner fireboxes separated by a water space and proved outstandingly successful. The spectacle of this locomotive hauling immensely long trains up grade, through the Festiniog Railway's sinuous curves, was demonstrated before engineers from many parts of the world and had lasting effect. Fairlie himself became a great protagonist of narrow-gauge railways and influenced their construction in many countries.
    Towards the end of the 1860s, Fairlie was designing steam carriages or, as they would now be called, railcars, but only one was built before the death of George England Jr precipitated closure of the works in 1870. Fairlie's business became a design agency and his patent locomotives were built in large numbers under licence by many noted locomotive builders, for narrow, standard and broad gauges. Few operated in Britain, but many did in other lands; they were particularly successful in Mexico and Russia.
    Many Fairlie locomotives were fitted with the radial valve gear invented by Egide Walschaert; Fairlie's role in the universal adoption of this valve gear was instrumental, for he introduced it to Britain in 1877 and fitted it to locomotives for New Zealand, whence it eventually spread worldwide. Earlier, in 1869, the Great Southern \& Western Railway of Ireland had built in its works the first "single Fairlie", a 0–4–4 tank engine carried on two bogies but with only one of them powered. This type, too, became popular during the last part of the nineteenth century. In the USA it was built in quantity by William Mason of Mason Machine Works, Taunton, Massachusetts, in preference to the double-ended type.
    Double Fairlies may still be seen in operation on the Festiniog Railway; some of Fairlie's ideas were far ahead of their time, and modern diesel and electric locomotives are of the powered-bogie, double-ended type.
    [br]
    Bibliography
    1864, British patent no. 1,210 (Fairlie's master patent).
    1864, Locomotive Engines, What They Are and What They Ought to Be, London; reprinted 1969, Portmadoc: Festiniog Railway Co. (promoting his ideas for locomotives).
    1865, British patent no. 3,185 (single Fairlie).
    1867. British patent no. 3,221 (combined locomotive/carriage).
    1868. "Railways and their Management", Journal of the Society of Arts: 328. 1871. "On the Gauge for Railways of the Future", abstract in Report of the Fortieth
    Meeting of the British Association in 1870: 215. 1872. British patent no. 2,387 (taper boiler).
    1872, Railways or No Railways. "Narrow Gauge, Economy with Efficiency; or Broad Gauge, Costliness with Extravagance", London: Effingham Wilson; repr. 1990s Canton, Ohio: Railhead Publications (promoting the cause for narrow-gauge railways).
    Further Reading
    Fairlie and his patent locomotives are well described in: P.C.Dewhurst, 1962, "The Fairlie locomotive", Part 1, Transactions of the Newcomen Society 34; 1966, Part 2, Transactions 39.
    R.A.S.Abbott, 1970, The Fairlie Locomotive, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Fairlie, Robert Francis

  • 10 Inoue Masaru

    [br]
    b. 1 August 1843 Hagi, Choshu, Japan
    d. 2 August 1910 London, England
    [br]
    Japanese "Father of Japanese Railways".
    [br]
    In the early 1860s, most travel in Japan was still by foot and the Japanese were forbidden by their government to travel abroad. Inoue was one of a small group of students who left Japan illegally in 1863 for London. There he studied English, mathematics and science, and afterwards mineralogy and railways. Inoue returned to Japan in 1868, when the new Meiji Government reopened the country to the outside world after some 200 years of isolation. Part of its policy, despite opposition, was to build railways; at Inoue's suggestion, the gauge of 3 ft 6 in. (1.07 m) was adopted. Initially capital, engineers, skilled labour and materials ranging from locomotives to pencils and stationery were all imported from Britain; Edmund Morel was the first Chief Engineer. In 1871 Inoue was appointed Director of the Government Railway Bureau and he became the driving force behind railway development in Japan for more than two decades. The first line, from Tokyo to Yokohama, was opened in 1872, to be followed by others, some of them at first isolated. The number of foreigners employed, most of them British, peaked at 120 in 1877 and then rapidly declined as the Japanese learned to take over their tasks. In 1878, at Inoue's instance, construction of a line entirely by Japanese commenced for the first time, with British engineers as consultants only. It was ten years before Japanese Railways' total route was 70 miles (113 km) long; over the next ten years, this increased to 1,000 miles (1,600 km) and the system continued to grow rapidly. During 1892–3, a locomotive was built in Japan for the first time, under the guidance of Locomotive Superintendent R.F.Trevithick, grandson of the pioneer Richard Trevithick: it was a compound 2–4–2 tank engine, with many parts imported from Britain. Locomotive building in Japan then blossomed so rapidly that imports were discontinued, with rare exceptions, from 1911. Meanwhile Inoue had retired in 1893; he was on a visit to England at the time of his death.
    [br]
    Principal Honours and Distinctions
    Viscount 1887.
    Bibliography
    1909, "Japanese communications: railroads", in Count Shigenobu Okuma (ed.), Fifty Years of New Japan (English version ed. M.B.Huish), Smith, Elder, Ch. 18.
    Further Reading
    T.Richards and K.C.Rudd, 1991 Japanese Railways in the Meiji Period 1868–1912, Uxbridge: Brunel University (one of the few readily available accounts in English of the origins of Japanese Railways).
    PJGR

    Biographical history of technology > Inoue Masaru

  • 11 Palmer, Henry Robinson

    [br]
    b. 1795 Hackney, London, England
    d. 12 September 1844
    [br]
    English civil engineer and monorail pioneer.
    [br]
    Palmer was an assistant to Thomas Telford for ten years from 1816. In 1818 he arranged a meeting of young engineers from which the Institution of Civil Engineers originated. In the early 1820s he invented a monorail system, the first of its kind, in which a single rail of wood, with an iron strip spiked on top to form a running surface, was supported on posts. Wagon bodies were supported pannier fashion from a frame attached to grooved wheels and were propelled by men or horses. An important object was to minimize friction, and short lines were built on this principle at Deptford and Cheshunt. In 1826 Palmer was appointed Resident Engineer to the London Docks and was responsible for the construction of many of them. He was subsequently consulted about many important engineering works.
    [br]
    Principal Honours and Distinctions
    FRS 1831. Vice-President, Institution of Civil Engineers.
    Bibliography
    1821, British patent no. 4,618 (monorail).
    1823, Description of a Railway on a New Principle…, London (describes his monorail).
    Further Reading
    Obituary, 1845, Minutes of Proceedings of the Institution of Civil Engineers 4. C.von Oeynhausen and H.von Dechen, 1971, Railways in England 1826 and 1827, London: Newcomen Society (a contemporary description of the monorails). M.J.T.Lewis, 1970, Early Wooden Railways, London: Routledge \& Kegan Paul.
    PJGR

    Biographical history of technology > Palmer, Henry Robinson

  • 12 Hamilton, Harold Lee (Hal)

    [br]
    b. 14 June 1890 Little Shasta, California, USA
    d. 3 May 1969 California, USA
    [br]
    American pioneer of diesel rail traction.
    [br]
    Orphaned as a child, Hamilton went to work for Southern Pacific Railroad in his teens, and then worked for several other companies. In his spare time he learned mathematics and physics from a retired professor. In 1911 he joined the White Motor Company, makers of road motor vehicles in Denver, Colorado, where he had gone to recuperate from malaria. He remained there until 1922, apart from an eighteenth-month break for war service.
    Upon his return from war service, Hamilton found White selling petrol-engined railbuses with mechanical transmission, based on road vehicles, to railways. He noted that they were not robust enough and that the success of petrol railcars with electric transmission, built by General Electric since 1906, was limited as they were complex to drive and maintain. In 1922 Hamilton formed, and became President of, the Electro- Motive Engineering Corporation (later Electro-Motive Corporation) to design and produce petrol-electric rail cars. Needing an engine larger than those used in road vehicles, yet lighter and faster than marine engines, he approached the Win ton Engine Company to develop a suitable engine; in addition, General Electric provided electric transmission with a simplified control system. Using these components, Hamilton arranged for his petrol-electric railcars to be built by the St Louis Car Company, with the first being completed in 1924. It was the beginning of a highly successful series. Fuel costs were lower than for steam trains and initial costs were kept down by using standardized vehicles instead of designing for individual railways. Maintenance costs were minimized because Electro-Motive kept stocks of spare parts and supplied replacement units when necessary. As more powerful, 800 hp (600 kW) railcars were produced, railways tended to use them to haul trailer vehicles, although that practice reduced the fuel saving. By the end of the decade Electro-Motive needed engines more powerful still and therefore had to use cheap fuel. Diesel engines of the period, such as those that Winton had made for some years, were too heavy in relation to their power, and too slow and sluggish for rail use. Their fuel-injection system was erratic and insufficiently robust and Hamilton concluded that a separate injector was needed for each cylinder.
    In 1930 Electro-Motive Corporation and Winton were acquired by General Motors in pursuance of their aim to develop a diesel engine suitable for rail traction, with the use of unit fuel injectors; Hamilton retained his position as President. At this time, industrial depression had combined with road and air competition to undermine railway-passenger business, and Ralph Budd, President of the Chicago, Burlington \& Quincy Railroad, thought that traffic could be recovered by way of high-speed, luxury motor trains; hence the Pioneer Zephyr was built for the Burlington. This comprised a 600 hp (450 kW), lightweight, two-stroke, diesel engine developed by General Motors (model 201 A), with electric transmission, that powered a streamlined train of three articulated coaches. This train demonstrated its powers on 26 May 1934 by running non-stop from Denver to Chicago, a distance of 1,015 miles (1,635 km), in 13 hours and 6 minutes, when the fastest steam schedule was 26 hours. Hamilton and Budd were among those on board the train, and it ushered in an era of high-speed diesel trains in the USA. By then Hamilton, with General Motors backing, was planning to use the lightweight engine to power diesel-electric locomotives. Their layout was derived not from steam locomotives, but from the standard American boxcar. The power plant was mounted within the body and powered the bogies, and driver's cabs were at each end. Two 900 hp (670 kW) engines were mounted in a single car to become an 1,800 hp (l,340 kW) locomotive, which could be operated in multiple by a single driver to form a 3,600 hp (2,680 kW) locomotive. To keep costs down, standard locomotives could be mass-produced rather than needing individual designs for each railway, as with steam locomotives. Two units of this type were completed in 1935 and sent on trial throughout much of the USA. They were able to match steam locomotive performance, with considerable economies: fuel costs alone were halved and there was much less wear on the track. In the same year, Electro-Motive began manufacturing diesel-electrie locomotives at La Grange, Illinois, with design modifications: the driver was placed high up above a projecting nose, which improved visibility and provided protection in the event of collision on unguarded level crossings; six-wheeled bogies were introduced, to reduce axle loading and improve stability. The first production passenger locomotives emerged from La Grange in 1937, and by early 1939 seventy units were in service. Meanwhile, improved engines had been developed and were being made at La Grange, and late in 1939 a prototype, four-unit, 5,400 hp (4,000 kW) diesel-electric locomotive for freight trains was produced and sent out on test from coast to coast; production versions appeared late in 1940. After an interval from 1941 to 1943, when Electro-Motive produced diesel engines for military and naval use, locomotive production resumed in quantity in 1944, and within a few years diesel power replaced steam on most railways in the USA.
    Hal Hamilton remained President of Electro-Motive Corporation until 1942, when it became a division of General Motors, of which he became Vice-President.
    [br]
    Further Reading
    P.M.Reck, 1948, On Time: The History of the Electro-Motive Division of General Motors Corporation, La Grange, Ill.: General Motors (describes Hamilton's career).
    PJGR

    Biographical history of technology > Hamilton, Harold Lee (Hal)

  • 13 MacNeill, Sir John Benjamin

    [br]
    b. 1793 (?) Mount Pleasant, near Dundalk, Louth, Ireland
    d. 2 March 1880
    [br]
    Irish railway engineer and educator.
    [br]
    Sir John MacNeill became a pupil of Thomas Telford and served under him as Superintendent of the Southern Division of the Holyhead Road from London to Shrewsbury. In this capacity he invented a "Road Indicator" or dynamometer. Like other Telford followers, he viewed the advent of railways with some antipathy, but after the death of Telford in 1834 he quickly became involved in railway construction and in 1837 he was retained by the Irish Railway Commissioners to build railways in the north of Ireland (Vignoles received the commission for the south). Much of his subsequent career was devoted to schemes for Irish railways, both those envisaged by the Commissioners and other private lines with more immediately commercial objectives. He was knighted in 1844 on the completion of the Dublin \& Drogheda Railway along the east coast of Ireland. In 1845 MacNeill lodged plans for over 800 miles (1,300 km) of Irish railways. Not all of these were built, many falling victim to Irish poverty in the years after the Famine, but he maintained a large staff and became financially embarrassed. His other schemes included the Grangemouth Docks in Scotland, the Liverpool \& Bury Railway, and the Belfast Waterworks, the latter completed in 1843 and subsequently extended by Bateman.
    MacNeill was an engineer of originality, being the person who introduced iron-lattice bridges into Britain, employing the theoretical and experimental work of Fairbairn and Eaton Hodgkinson (the Boyne Bridge at Drogheda had two such spans of 250ft (76m) each). He also devised the Irish railway gauge of 5 ft 2 in. (1.57 m). Consulted by the Board of Trinity College, Dublin, regarding a School of Engineering in 1842, he was made an Honorary LLD of the University and appointed the first Professor of Civil Engineering, but he relinquished the chair to his assistant, Samuel Downing, in 1846. MacNeill was a large and genial man, but not, we are told, "of methodical and business habit": he relied heavily on his subordinates. Blindness obliged him to retire from practice several years before his death. He was an early member of the Institution of Civil Engineers, joining in 1827, and was elected a Fellow of the Royal Society in 1838.
    [br]
    Principal Honours and Distinctions
    FRS 1838.
    Further Reading
    Dictionary of National Biography. Proceedings of the Institution of Civil Engineers
    73:361–71.
    AB

    Biographical history of technology > MacNeill, Sir John Benjamin

  • 14 Pullman, George Mortimer

    [br]
    b. 3 March 1831 Brocton, New York, USA
    d. 19 October 1897 Chicago, Illinois, USA
    [br]
    American inventor of the Pullman car.
    [br]
    Pullman was initially a cabinet-maker in Albion, New York, and then became a road-works contractor in Chicago. Observing a need for improved sleeping accommodation on trains, he arranged in 1858 with the Chicago \& Alton Railroad to convert two of their coaches into sleeping cars by incorporating upper berths hinged to the sides of the car. These and a third car entered service in 1859 and were popular with passengers, but other railways were reluctant to adopt them.
    Pullman moved to the Colorado mining area and kept a general store, but in 1863 he returned to Chicago. With Ben Field he spent a year building the car Pioneer, which not only incorporated the folding upper berths but also had seats arranged to convert into lower berths. When Pioneer entered service, the travelling public was enthusiastic: Pullman and Field built more cars, and an increasing number of railways arranged to operate them under contract. In 1867 Pullman and Field organized the Pullman Palace Car Company, which grew to have five car-building plants. Pullman introduced a combined sleeping/restaurant car in 1867 and the dining car in 1868.
    In 1872 James Allport, General Manager of the Midland Railway in Britain, toured the USA and was impressed by Pullman cars. He arranged with Pullman for the American company to ship a series of Pullman cars to Britain in parts for Midland to assemble at its works at Derby. The first, a sleeping car, was completed early in 1874 and entered service on the Midland Railway. Several others followed the same year, including the first Pullman Parlor Car, a luxury coach for day rather than overnight use, to enter service in Europe. Pullman formed the Pullman Palace Car Company (Europe), and although the Midland Railway purchased the Pullman cars running on its system a few years later, Pullman cars were used on many other railways in Britain (notably the London Brighton \& South Coast Railway) and on the continent of Europe. In 1881 the Pullman Parlor Car Globe, running in Britain, became the first vehicle to be illuminated by electric light.
    [br]
    Bibliography
    1864. jointly with Field, US patent no. 42,182 (upper berth).
    1865, jointly with Field, US patent no. 49,992 (the seat convertible into a lower berth).
    Further Reading
    C.Hamilton Ellis, 1965, Railway Carriages in the British Isles, London: George Allen \& Unwin, Ch. 6 (describes the introduction of Pullman cars to Europe).
    PJGR

    Biographical history of technology > Pullman, George Mortimer

  • 15 Rastrick, John Urpeth

    [br]
    b. 26 January 1780 Morpeth, England
    d. 1 November 1856 Chertsey, England
    [br]
    English engineer whose career spanned the formative years of steam railways, from constructing some of the earliest locomotives to building great trunk lines.
    [br]
    John Urpeth Rastrick, son of an engineer, was initially articled to his father and then moved to Ketley Ironworks, Shropshire, c. 1801. In 1808 he entered into a partnership with John Hazledine at Bridgnorth, Shropshire: Hazledine and Rastrick built many steam engines to the designs of Richard Trevithick, including the demonstration locomotive Catch-Me-Who-Can. The firm also built iron bridges, notably the bridge over the River Wye at Chepstow in 1815–16.
    Between 1822 and 1826 the Stratford \& Moreton Railway was built under Rastrick's direction. Malleable iron rails were laid, in one of the first instances of their use. They were supplied by James Foster of Stourbridge, with whom Rastrick went into partnership after the death of Hazledine. In 1825 Rastrick was one of a team of engineers sent by the committee of the proposed Liverpool \& Manchester Railway (L \& MR) to carry out trials of locomotives built by George Stephenson on the Killingworth Waggonway. Early in 1829 the directors of the L \& MR, which was by then under construction, sent Rastrick and James Walker to inspect railways in North East England and report on the relative merits of steam locomotives and fixed engines with cable haulage. They reported, rather hesitantly, in favour of the latter, particularly the reciprocal system of Benjamin Thompson. In consequence the Rainhill Trials, at which Rastrick was one of the judges, were held that October. In 1829 Rastrick constructed the Shutt End colliery railway in Worcestershire, for which Foster and Rastrick built the locomotive Agenoria; this survives in the National Railway Museum. Three similar locomotives were built to the order of Horatio Allen for export to the USA.
    From then until he retired in 1847 Rastrick found ample employment surveying railways, appearing as a witness before Parliamentary committees, and supervising construction. Principally, he surveyed the southern part of the Grand Junction Railway, which was built for the most part by Joseph Locke, and the line from Manchester to Crewe which was eventually built as the Manchester \& Birmingham Railway. The London \& Brighton Railway (Croydon to Brighton) was his great achievement: built under Rastrick's supervision between 1836 and 1840, it included three long tunnels and the magnificent Ouse Viaduct. In 1845 he was Engineer to the Gravesend \& Rochester Railway, the track of which was laid through the Thames \& Medway Canal's Strood Tunnel, partly on the towpath and partly on a continuous staging over the water.
    [br]
    Principal Honours and Distinctions
    FRS 1837.
    Bibliography
    1829, with Walker, Report…on the Comparative Merits of Locomotive and Fixed Engines, Liverpool.
    Further Reading
    C.F.Dendy Marshall, 1953, A History of Railway Locomotives Down to the End of the Year 1831, The Locomotive Publishing Co.
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    C.Hadfield and J.Norris, 1962, Waterways to Stratford, Newton Abbot: David \& Charles (covers Stratford and Moreton Railway).
    PJGR

    Biographical history of technology > Rastrick, John Urpeth

  • 16 Stephenson, George

    [br]
    b. 9 June 1781 Wylam, Northumberland, England
    d. 12 August 1848 Tapton House, Chesterfield, England
    [br]
    English engineer, "the father of railways".
    [br]
    George Stephenson was the son of the fireman of the pumping engine at Wylam colliery, and horses drew wagons of coal along the wooden rails of the Wylam wagonway past the house in which he was born and spent his earliest childhood. While still a child he worked as a cowherd, but soon moved to working at coal pits. At 17 years of age he showed sufficient mechanical talent to be placed in charge of a new pumping engine, and had already achieved a job more responsible than that of his father. Despite his position he was still illiterate, although he subsequently learned to read and write. He was largely self-educated.
    In 1801 he was appointed Brakesman of the winding engine at Black Callerton pit, with responsibility for lowering the miners safely to their work. Then, about two years later, he became Brakesman of a new winding engine erected by Robert Hawthorn at Willington Quay on the Tyne. Returning collier brigs discharged ballast into wagons and the engine drew the wagons up an inclined plane to the top of "Ballast Hill" for their contents to be tipped; this was one of the earliest applications of steam power to transport, other than experimentally.
    In 1804 Stephenson moved to West Moor pit, Killingworth, again as Brakesman. In 1811 he demonstrated his mechanical skill by successfully modifying a new and unsatisfactory atmospheric engine, a task that had defeated the efforts of others, to enable it to pump a drowned pit clear of water. The following year he was appointed Enginewright at Killingworth, in charge of the machinery in all the collieries of the "Grand Allies", the prominent coal-owning families of Wortley, Liddell and Bowes, with authorization also to work for others. He built many stationary engines and he closely examined locomotives of John Blenkinsop's type on the Kenton \& Coxlodge wagonway, as well as those of William Hedley at Wylam.
    It was in 1813 that Sir Thomas Liddell requested George Stephenson to build a steam locomotive for the Killingworth wagonway: Blucher made its first trial run on 25 July 1814 and was based on Blenkinsop's locomotives, although it lacked their rack-and-pinion drive. George Stephenson is credited with building the first locomotive both to run on edge rails and be driven by adhesion, an arrangement that has been the conventional one ever since. Yet Blucher was far from perfect and over the next few years, while other engineers ignored the steam locomotive, Stephenson built a succession of them, each an improvement on the last.
    During this period many lives were lost in coalmines from explosions of gas ignited by miners' lamps. By observation and experiment (sometimes at great personal risk) Stephenson invented a satisfactory safety lamp, working independently of the noted scientist Sir Humphry Davy who also invented such a lamp around the same time.
    In 1817 George Stephenson designed his first locomotive for an outside customer, the Kilmarnock \& Troon Railway, and in 1819 he laid out the Hetton Colliery Railway in County Durham, for which his brother Robert was Resident Engineer. This was the first railway to be worked entirely without animal traction: it used inclined planes with stationary engines, self-acting inclined planes powered by gravity, and locomotives.
    On 19 April 1821 Stephenson was introduced to Edward Pease, one of the main promoters of the Stockton \& Darlington Railway (S \& DR), which by coincidence received its Act of Parliament the same day. George Stephenson carried out a further survey, to improve the proposed line, and in this he was assisted by his 18-year-old son, Robert Stephenson, whom he had ensured received the theoretical education which he himself lacked. It is doubtful whether either could have succeeded without the other; together they were to make the steam railway practicable.
    At George Stephenson's instance, much of the S \& DR was laid with wrought-iron rails recently developed by John Birkinshaw at Bedlington Ironworks, Morpeth. These were longer than cast-iron rails and were not brittle: they made a track well suited for locomotives. In June 1823 George and Robert Stephenson, with other partners, founded a firm in Newcastle upon Tyne to build locomotives and rolling stock and to do general engineering work: after its Managing Partner, the firm was called Robert Stephenson \& Co.
    In 1824 the promoters of the Liverpool \& Manchester Railway (L \& MR) invited George Stephenson to resurvey their proposed line in order to reduce opposition to it. William James, a wealthy land agent who had become a visionary protagonist of a national railway network and had seen Stephenson's locomotives at Killingworth, had promoted the L \& MR with some merchants of Liverpool and had carried out the first survey; however, he overreached himself in business and, shortly after the invitation to Stephenson, became bankrupt. In his own survey, however, George Stephenson lacked the assistance of his son Robert, who had left for South America, and he delegated much of the detailed work to incompetent assistants. During a devastating Parliamentary examination in the spring of 1825, much of his survey was shown to be seriously inaccurate and the L \& MR's application for an Act of Parliament was refused. The railway's promoters discharged Stephenson and had their line surveyed yet again, by C.B. Vignoles.
    The Stockton \& Darlington Railway was, however, triumphantly opened in the presence of vast crowds in September 1825, with Stephenson himself driving the locomotive Locomotion, which had been built at Robert Stephenson \& Co.'s Newcastle works. Once the railway was at work, horse-drawn and gravity-powered traffic shared the line with locomotives: in 1828 Stephenson invented the horse dandy, a wagon at the back of a train in which a horse could travel over the gravity-operated stretches, instead of trotting behind.
    Meanwhile, in May 1826, the Liverpool \& Manchester Railway had successfully obtained its Act of Parliament. Stephenson was appointed Engineer in June, and since he and Vignoles proved incompatible the latter left early in 1827. The railway was built by Stephenson and his staff, using direct labour. A considerable controversy arose c. 1828 over the motive power to be used: the traffic anticipated was too great for horses, but the performance of the reciprocal system of cable haulage developed by Benjamin Thompson appeared in many respects superior to that of contemporary locomotives. The company instituted a prize competition for a better locomotive and the Rainhill Trials were held in October 1829.
    Robert Stephenson had been working on improved locomotive designs since his return from America in 1827, but it was the L \& MR's Treasurer, Henry Booth, who suggested the multi-tubular boiler to George Stephenson. This was incorporated into a locomotive built by Robert Stephenson for the trials: Rocket was entered by the three men in partnership. The other principal entrants were Novelty, entered by John Braithwaite and John Ericsson, and Sans Pareil, entered by Timothy Hackworth, but only Rocket, driven by George Stephenson, met all the organizers' demands; indeed, it far surpassed them and demonstrated the practicability of the long-distance steam railway. With the opening of the Liverpool \& Manchester Railway in 1830, the age of railways began.
    Stephenson was active in many aspects. He advised on the construction of the Belgian State Railway, of which the Brussels-Malines section, opened in 1835, was the first all-steam railway on the European continent. In England, proposals to link the L \& MR with the Midlands had culminated in an Act of Parliament for the Grand Junction Railway in 1833: this was to run from Warrington, which was already linked to the L \& MR, to Birmingham. George Stephenson had been in charge of the surveys, and for the railway's construction he and J.U. Rastrick were initially Principal Engineers, with Stephenson's former pupil Joseph Locke under them; by 1835 both Stephenson and Rastrick had withdrawn and Locke was Engineer-in-Chief. Stephenson remained much in demand elsewhere: he was particularly associated with the construction of the North Midland Railway (Derby to Leeds) and related lines. He was active in many other places and carried out, for instance, preliminary surveys for the Chester \& Holyhead and Newcastle \& Berwick Railways, which were important links in the lines of communication between London and, respectively, Dublin and Edinburgh.
    He eventually retired to Tapton House, Chesterfield, overlooking the North Midland. A man who was self-made (with great success) against colossal odds, he was ever reluctant, regrettably, to give others their due credit, although in retirement, immensely wealthy and full of honour, he was still able to mingle with people of all ranks.
    [br]
    Principal Honours and Distinctions
    President, Institution of Mechanical Engineers, on its formation in 1847. Order of Leopold (Belgium) 1835. Stephenson refused both a knighthood and Fellowship of the Royal Society.
    Bibliography
    1815, jointly with Ralph Dodd, British patent no. 3,887 (locomotive drive by connecting rods directly to the wheels).
    1817, jointly with William Losh, British patent no. 4,067 (steam springs for locomotives, and improvements to track).
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, Longman (the best modern biography; includes a bibliography).
    S.Smiles, 1874, The Lives of George and Robert Stephenson, rev. edn, London (although sycophantic, this is probably the best nineteenthcentury biography).
    PJGR

    Biographical history of technology > Stephenson, George

  • 17 good

    good [gʊd]
    ━━━━━━━━━━━━━━━━━
    2. noun
    ━━━━━━━━━━━━━━━━━
    ► compar better, superl best
    ━━━━━━━━━━━━━━━━━
    ━━━━━━━━━━━━━━━━━
    ► When good is part of a set combination, eg in a good temper, a good deal of, look up the noun.
    ━━━━━━━━━━━━━━━━━
       a. bon
       b. ( = kind) gentil
       c. ( = well-behaved) [child, animal] sage
    be good! sois sage !
       d. ( = at ease) I feel good je me sens bien
       e. ( = attractive) joli
    you look good! ( = healthy) tu as bonne mine ! ; ( = well-dressed) tu es très bien comme ça !
    ━━━━━━━━━━━━━━━━━
    ► Verb + adverb may be used in French, instead of adjective + noun. For combinations other than the following, look up the noun.
    ━━━━━━━━━━━━━━━━━
       h. (in exclamations) good! bien !
    that's a good one! [joke, story] elle est bien bonne celle-là ! (inf)
    good old Charles! (inf) ce bon vieux Charles !
    it's just not good enough! (indignantly) ça ne va pas du tout ! good for ( = healthy for)
    she as good as told me that... elle m'a dit à peu de chose près que...
    it's as good as saying that... autant dire que...
    in a day or so he'll be as good as new dans un jour ou deux il sera complètement rétabli to make good ( = succeed) faire son chemin ; [ex-criminal] s'acheter une conduite (inf) ; ( = compensate for) [+ deficit] combler ; [+ deficiency, losses] compenser ; [+ expenses] rembourser ; [+ injustice, damage] réparer
    2. noun
       a. ( = virtue) bien m
       b. ( = good deeds) to do good faire le bien
       c. ( = advantage, profit) bien m
    a lot of good that's done! nous voilà bien avancés !
    what good will that do you? ça t'avancera à quoi ?
    a fat lot of good that will do you! (inf) tu seras bien avancé !
    a lot of good that's done him! le voilà bien avancé !
       d. ( = use) what's the good? à quoi bon ?
    what's the good of hurrying? à quoi bon se presser ?
    it's not much good to me [advice, suggestion] ça ne m'avance pas à grand-chose ; [object, money] ça ne me sert pas à grand-chose
    is he any good? [worker, singer] qu'est-ce qu'il vaut ?
    no good ( = useless)
    it's no good, I'll never get it finished in time il n'y a rien à faire, je n'arriverai jamais à le finir à temps
       e. ► for good pour de bon
    good-humoured adjective [person, appearance, smile] jovial ; [joke] sans malice
    good-natured adjective [person] facile à vivre ; [smile, laughter] bon enfant inv
    ━━━━━━━━━━━━━━━━━
    Le Good Friday Agreement (« Accord du Vendredi saint »), également appelé le Belfast Agreement, a été signé le 10 avril 1998 dans le cadre du processus de paix qui devait mettre fin aux « Troubles » en Irlande du Nord. Il avait pour but de régler les relations entre l'Irlande du Nord et la République d'Irlande et entre ces deux pays et l'Angleterre, l'Écosse et le pays de Galles. Il a mis en place la « Northern Ireland Assembly » et lui a délégué certains pouvoirs. L'accord fut soumis à référendum le 22 mai 1998 et la population vota majoritairement pour.
    ━━━━━━━━━━━━━━━━━
    * * *
    [gʊd] 1.
    1) ( virtue) bien m

    to be up to no good — (colloq) mijoter quelque chose (colloq)

    2) ( benefit) bien m

    for the good of his healthlit pour sa santé

    no good can ou will come of it — rien de bon n'en sortira

    3) ( use)
    4) GB ( profit)

    to be £20 to the good — avoir 20 livres sterling à son crédit

    2.
    goods plural noun
    1) ( for sale) gen articles mpl, marchandise f

    electrical goodsappareils mpl électro-ménagers

    goods and servicesbiens mpl de consommation et services

    2) GB Railways marchandises fpl
    3) ( property) affaires fpl, biens mpl
    4) (colloq)

    to deliver ou come up with the goods — répondre à l'attente de quelqu'un

    3.
    goods noun modifier GB Railways [ depot, station, train, wagon] de marchandises
    4.
    adjective (comparative better; superlative best)
    1) ( enjoyable) gen bon/bonne; [party] réussi
    2) ( happy)

    to feel good about/doing — être content de/de faire

    3) ( healthy) [eye, ear etc] bon/bonne
    4) ( high quality) bon/bonne; ( best) [coat, china] beau/belle; [degree] avec mention (after n)
    5) ( prestigious) (épith) [address, marriage] bon/bonne
    6) ( obedient) [child, dog] sage; [manners] bon/bonne

    there's a good boy ou girl! — c'est bien!

    7) ( favourable) bon/bonne
    8) ( attractive) beau/belle

    to look good with[garment, accessories] aller bien avec

    9) ( tasty) [meal] bon/bonne
    10) ( virtuous) (épith) [man, life] vertueux/-euse; [Christian] bon/bonne
    11) ( kind) [person] gentil/-ille

    would you be good enough to do —

    12) ( pleasant) [humour, mood] bon/bonne
    13) ( competent) bon/bonne

    to be good atêtre bon en [Latin, physics]; être bon à [badminton, chess]

    to be no good at — être nul/nulle en [tennis, chemistry]; être nul/nulle à [chess, cards]

    to be good withsavoir comment s'y prendre avec [children, animals]; aimer [figures]

    14) ( beneficial)

    to be good forfaire du bien à [person, plant]; être bon pour [health, business, morale]

    say nothing if you know what's good for you — si je peux te donner un conseil, ne dis rien

    15) (effective, suitable, accurate, sensible) bon/bonne

    to look good[design] faire de l'effet

    16) ( fluent)
    17) ( fortunate)

    it's a good job ou thing (that) — heureusement que

    it's a good job ou thing too! — tant mieux!

    we've never had it so good — (colloq) les affaires n'ont jamais été aussi prospères

    the car is good for another 10,000 km — la voiture fera encore 10000 km

    19) ( substantial) (épith) [salary, size, hour] bon/bonne

    it must be worth a good 2,000 dollars — ça doit valoir au moins 2000 dollars

    we had a good laugh — on a bien ri; better, best

    5.
    as good as adverbial phrase
    1) ( virtually) quasiment

    to be as good as new — être comme neuf/neuve

    6.
    for good adverbial phrase pour toujours
    7.
    exclamation (expressing pleasure, satisfaction) c'est bien!; ( with relief) tant mieux!; (to encourage, approve) très bien!
    ••

    good for you! — ( approvingly) bravo!; ( sarcastically) tant mieux pour toi!

    that's a good one! — (of joke, excuse) elle est bonne celle-là!

    good on you! — (colloq) GB bravo!

    to be onto a good thing (colloq), to have a good thing going — (colloq) être sur un bon filon

    English-French dictionary > good

  • 18 Brunel, Isambard Kingdom

    [br]
    b. 9 April 1806 Portsea, Hampshire, England
    d. 15 September 1859 18 Duke Street, St James's, London, England
    [br]
    English civil and mechanical engineer.
    [br]
    The son of Marc Isambard Brunel and Sophia Kingdom, he was educated at a private boarding-school in Hove. At the age of 14 he went to the College of Caen and then to the Lycée Henri-Quatre in Paris, after which he was apprenticed to Louis Breguet. In 1822 he returned from France and started working in his father's office, while spending much of his time at the works of Maudslay, Sons \& Field.
    From 1825 to 1828 he worked under his father on the construction of the latter's Thames Tunnel, occupying the position of Engineer-in-Charge, exhibiting great courage and presence of mind in the emergencies which occurred not infrequently. These culminated in January 1828 in the flooding of the tunnel and work was suspended for seven years. For the next five years the young engineer made abortive attempts to find a suitable outlet for his talents, but to little avail. Eventually, in 1831, his design for a suspension bridge over the River Avon at Clifton Gorge was accepted and he was appointed Engineer. (The bridge was eventually finished five years after Brunel's death, as a memorial to him, the delay being due to inadequate financing.) He next planned and supervised improvements to the Bristol docks. In March 1833 he was appointed Engineer of the Bristol Railway, later called the Great Western Railway. He immediately started to survey the route between London and Bristol that was completed by late August that year. On 5 July 1836 he married Mary Horsley and settled into 18 Duke Street, Westminster, London, where he also had his office. Work on the Bristol Railway started in 1836. The foundation stone of the Clifton Suspension Bridge was laid the same year. Whereas George Stephenson had based his standard railway gauge as 4 ft 8½ in (1.44 m), that or a similar gauge being usual for colliery wagonways in the Newcastle area, Brunel adopted the broader gauge of 7 ft (2.13 m). The first stretch of the line, from Paddington to Maidenhead, was opened to traffic on 4 June 1838, and the whole line from London to Bristol was opened in June 1841. The continuation of the line through to Exeter was completed and opened on 1 May 1844. The normal time for the 194-mile (312 km) run from Paddington to Exeter was 5 hours, at an average speed of 38.8 mph (62.4 km/h) including stops. The Great Western line included the Box Tunnel, the longest tunnel to that date at nearly two miles (3.2 km).
    Brunel was the engineer of most of the railways in the West Country, in South Wales and much of Southern Ireland. As railway networks developed, the frequent break of gauge became more of a problem and on 9 July 1845 a Royal Commission was appointed to look into it. In spite of comparative tests, run between Paddington-Didcot and Darlington-York, which showed in favour of Brunel's arrangement, the enquiry ruled in favour of the narrow gauge, 274 miles (441 km) of the former having been built against 1,901 miles (3,059 km) of the latter to that date. The Gauge Act of 1846 forbade the building of any further railways in Britain to any gauge other than 4 ft 8 1/2 in (1.44 m).
    The existence of long and severe gradients on the South Devon Railway led to Brunel's adoption of the atmospheric railway developed by Samuel Clegg and later by the Samuda brothers. In this a pipe of 9 in. (23 cm) or more in diameter was laid between the rails, along the top of which ran a continuous hinged flap of leather backed with iron. At intervals of about 3 miles (4.8 km) were pumping stations to exhaust the pipe. Much trouble was experienced with the flap valve and its lubrication—freezing of the leather in winter, the lubricant being sucked into the pipe or eaten by rats at other times—and the experiment was abandoned at considerable cost.
    Brunel is to be remembered for his two great West Country tubular bridges, the Chepstow and the Tamar Bridge at Saltash, with the latter opened in May 1859, having two main spans of 465 ft (142 m) and a central pier extending 80 ft (24 m) below high water mark and allowing 100 ft (30 m) of headroom above the same. His timber viaducts throughout Devon and Cornwall became a feature of the landscape. The line was extended ultimately to Penzance.
    As early as 1835 Brunel had the idea of extending the line westwards across the Atlantic from Bristol to New York by means of a steamship. In 1836 building commenced and the hull left Bristol in July 1837 for fitting out at Wapping. On 31 March 1838 the ship left again for Bristol but the boiler lagging caught fire and Brunel was injured in the subsequent confusion. On 8 April the ship set sail for New York (under steam), its rival, the 703-ton Sirius, having left four days earlier. The 1,340-ton Great Western arrived only a few hours after the Sirius. The hull was of wood, and was copper-sheathed. In 1838 Brunel planned a larger ship, some 3,000 tons, the Great Britain, which was to have an iron hull.
    The Great Britain was screwdriven and was launched on 19 July 1843,289 ft (88 m) long by 51 ft (15.5 m) at its widest. The ship's first voyage, from Liverpool to New York, began on 26 August 1845. In 1846 it ran aground in Dundrum Bay, County Down, and was later sold for use on the Australian run, on which it sailed no fewer than thirty-two times in twenty-three years, also serving as a troop-ship in the Crimean War. During this war, Brunel designed a 1,000-bed hospital which was shipped out to Renkioi ready for assembly and complete with shower-baths and vapour-baths with printed instructions on how to use them, beds and bedding and water closets with a supply of toilet paper! Brunel's last, largest and most extravagantly conceived ship was the Great Leviathan, eventually named The Great Eastern, which had a double-skinned iron hull, together with both paddles and screw propeller. Brunel designed the ship to carry sufficient coal for the round trip to Australia without refuelling, thus saving the need for and the cost of bunkering, as there were then few bunkering ports throughout the world. The ship's construction was started by John Scott Russell in his yard at Millwall on the Thames, but the building was completed by Brunel due to Russell's bankruptcy in 1856. The hull of the huge vessel was laid down so as to be launched sideways into the river and then to be floated on the tide. Brunel's plan for hydraulic launching gear had been turned down by the directors on the grounds of cost, an economy that proved false in the event. The sideways launch with over 4,000 tons of hydraulic power together with steam winches and floating tugs on the river took over two months, from 3 November 1857 until 13 January 1858. The ship was 680 ft (207 m) long, 83 ft (25 m) beam and 58 ft (18 m) deep; the screw was 24 ft (7.3 m) in diameter and paddles 60 ft (18.3 m) in diameter. Its displacement was 32,000 tons (32,500 tonnes).
    The strain of overwork and the huge responsibilities that lay on Brunel began to tell. He was diagnosed as suffering from Bright's disease, or nephritis, and spent the winter travelling in the Mediterranean and Egypt, returning to England in May 1859. On 5 September he suffered a stroke which left him partially paralysed, and he died ten days later at his Duke Street home.
    [br]
    Further Reading
    L.T.C.Rolt, 1957, Isambard Kingdom Brunel, London: Longmans Green. J.Dugan, 1953, The Great Iron Ship, Hamish Hamilton.
    IMcN

    Biographical history of technology > Brunel, Isambard Kingdom

  • 19 Fox, Sir Charles

    [br]
    b. 11 March 1810 Derby, England
    d. 14 June 1874 Blackheath, London, England
    [br]
    English railway engineer, builder of Crystal Palace, London.
    [br]
    Fox was a pupil of John Ericsson, helped to build the locomotive Novelty, and drove it at the Rainhill Trials in 1829. He became a driver on the Liverpool \& Manchester Railway and then a pupil of Robert Stephenson, who appointed him an assistant engineer for construction of the southern part of the London \& Birmingham Railway, opened in 1837. He was probably responsible for the design of the early bow-string girder bridge which carried the railway over the Regent's Canal. He also invented turnouts with switch blades, i.e. "points". With Robert Stephenson he designed the light iron train sheds at Euston Station, a type of roof that was subsequently much used elsewhere. He then became a partner in Fox, Henderson \& Co., railway contractors and manufacturers of railway equipment and bridges. The firm built the Crystal Palace in London for the Great Exhibition of 1851: Fox did much of the detail design work personally and was subsequently knighted. It also built many station roofs, including that at Paddington. From 1857 Fox was in practice in London as a consulting engineer in partnership with his sons, Charles Douglas Fox and Francis Fox. Sir Charles Fox became an advocate of light and narrow-gauge railways, although he was opposed to break-of-gauge unless it was unavoidable. He was joint Engineer for the Indian Tramway Company, building the first narrow-gauge (3 ft 6 in. or 107 cm) railway in India, opened in 1865, and his firm was Consulting Engineer for the first railways in Queensland, Australia, built to the same gauge at the same period on recommendation of Government Engineer A.C.Fitzgibbon.
    [br]
    Principal Honours and Distinctions
    Knighted 1851.
    Further Reading
    F.Fox, 1904, River, Road, and Rail, John Murray, Ch. 1 (personal reminiscences by his son).
    L.T.C.Rolt, 1970, Victorian Engineering, London: Allen Lane.
    PJGR

    Biographical history of technology > Fox, Sir Charles

  • 20 Janney, Eli Hamilton

    [br]
    b. 12 November 1831 Loudoun County, Virginia, USA
    d. 16 June 1912 Alexandria, Virginia, USA
    [br]
    American inventor of buckeye coupling for railway vehicles.
    [br]
    Early American railways used link-and-pin couplings, with consequent danger to life and limb of those who had to go between vehicles to couple and uncouple them. Many inventors tried to produce a coupling that would couple automatically and could be uncoupled from the trackside, and Janney was eventually successful in achieving this. He invented his device, which worked like the hooked fingers of two hands, in 1868, and after improvement it was adopted by the Pennsylvania Railroad in 1874. Janney formed the Janney Car Coupling Company, but it was not until 1888 that the Master Car Builders' Association made the Janney coupling standard on American railways. Automatic couplings were made compulsory in the USA by the Railroad Safety Appliance Act of 1893.
    [br]
    Bibliography
    Janney took out five US patents for automatic couplings between 1868 and 1882.
    Further Reading
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press, pp. 152ö4.
    PJGR

    Biographical history of technology > Janney, Eli Hamilton

См. также в других словарях:

  • Railways in Melbourne — Melbourne rail network  City Loop  Caulfield group  Frankston line  Pakenham line  Sandringham line  Cranbourne line …   Wikipedia

  • Railways in Adelaide — The rail network in Adelaide, South Australia, consists of five lines and 81 stations, totalling 125.9 km.Fact|date=April 2008 It is operated by TransAdelaide, and is part of the city wide Adelaide Metro public transport system. Apart from the… …   Wikipedia

  • Railways in Guyana — The Railways of Guyana comprised two public railways and several industrial railways, including the first in South America. Contents 1 Demerara Berbice railway 1.1 Route 1.2 History 1.3 Service …   Wikipedia

  • Railways on the West Coast of Tasmania — The history of the Railways on the West Coast of Tasmania has fascinated enthusiasts from around the world, because of the combination of the harsh terrain in which the railways were created, and the unique nature of most of the lines. The Mount… …   Wikipedia

  • Railways —    Along with steamships, the telegraph, advances in military hardware, and improvements in tropical medicine, railways were critical vehicles for the advancement of European empires, both formal and informal. From their initial development in… …   Encyclopedia of the Age of Imperialism, 1800–1914

  • railways and railroads — The world’s first railway along which passengers travelled on trains pulled by steam locomotives was opened in 1825 between Stockton and Darlington in north east England. By the early 1900s, when railways reached the height of their popularity,… …   Universalium

  • railways —    The contemporary railway system in Spain comprises, first, the Spanish standard gauge system operated by the Spanish state railway company Renfe; second, the High Speed service operating on European gauge track (see also AVE); third, the… …   Encyclopedia of contemporary Spanish culture

  • early — ear|ly1 W1S1 [ˈə:li US ˈə:rli] adj comparative earlier superlative earliest ▬▬▬▬▬▬▬ 1¦(first part)¦ 2¦(before usual)¦ 3¦(beginning)¦ 4¦(new thing)¦ 5 the early hours 6 an early start 7 at/from an early age …   Dictionary of contemporary English

  • Railways —    E History of, in Canada, 99; vigorous policy of La Fontaine Baldwin government, 99 101; and Hincks Morin ministry, 114 117. C Cartier favours building of, 45. BL Early charters for, in Canada, 301. B One from Quebec to Windsor and Sarnia… …   The makers of Canada

  • Early VFL Final systems — The perceived need for a structured final system was, perhaps, the most important single reason that eight senior clubs broke away from the Victorian Football Association (VFA) in 1896, and formed the Victorian Football League (VFL) in 1897.The… …   Wikipedia

  • Railways —    Brussels served as the point of arrival of the first railroad on the European continent with completion of a rail link from Mechelen, inaugurated on 5 May 1835. The train proceeded at 20 km per hour (12 mph) and English engineer and locomotive …   Historical Dictionary of Brussels

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»